Data structures for 3D Meshes

Paolo Cignoni
paolo.cignoni@isti.cnr.it
http://vcg.isti.cnr.it/~cignoni

Surfaces

A 2-dimensional region of 3D space
A portion of space having length and breadth but no thickness

Defining Surfaces

Analytic definitions

(aka exact)

* Parametric surfaces

A function that maps points on a 2D domain over a 3D surface

$$
S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

* Implicit surfaces

A surface defined where the points of the 3D space satisfy a certain property (usually a given function $=0$)

$$
S=\left\{p \in \mathbb{R}^{3}: f(p)=0\right\}
$$

Analytic Surfaces

Parametric surfaces

A function that maps points on a 2D domain over a 3D surface:

$$
\begin{gathered}
S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
S(x, y)=\left(x, y, \sin \left(\sqrt{\left(x^{2}+y^{2}\right)}\right) / \sqrt{\left(x^{2}+y^{2}\right)}\right) \\
\\
x=(R+r \cdot \sin t) \cdot \cos s \\
y=(R+r \sin t) \cdot \sin s \\
z=r \cdot \cos t
\end{gathered}
$$

Analytic Surfaces

* Implicit surfaces

A surface defined where the points of the 3D space satisfy a certain property (usually a given function $=0$)

$$
S=\left\{p \in \mathbb{R}^{3}: f(p)=0\right\}
$$

$S=\left\{(x, y, z): x^{2}+y^{2}+z^{2}-r^{2}=0\right\}$

$S=\left\{(x, y, z):\left(x^{2}+y^{2}+R^{2}-r^{2}\right)^{2}-4 \mathbf{R}^{2}\left(x^{2}+y^{2}\right)=0\right\}$

Representing Real World Surfaces

* Analytic definition falls short of representing real world surfaces in a tractable way

$$
S(x, y)=\ldots ?
$$

... surfaces can be represented by cell complexes

Cell complexes (meshes)

Intuitive description: a continuous surface divided in polygons

Generic polygons

Cell Complexes (meshes)

* In nature, meshes arise in a variety of contexts:
- Cells in organic tissues
- Crystals
*Molecules
: Mostly convex but irregular cells
* Common concept: complex shapes can be described as collections of simple building blocks

Cell Complexes (meshes)

Slightly more formal definition

 a cell is a convex polytope ina proper face of a cell is a lower dimension convex polytope subset of a cell

Cell Complexes (meshes)

a collection of cells is a complex iff

* every face of a cell belongs to the complex For every cells C and C', their intersection either is empty or is a common face of both

Maximal Cell Complex

the order of a cell is the number of its sides (or vertices)
a complex is a \mathbf{k}-complex if the maximum of the order of its cells is k
a cell is maximal if it is not a face of another cell a k -complex is maximal iff all maximal cells have order k

* short form : no dangling edges!

Simplicial Complex

A cell complex is a simplicial complex when the cells are simplexes
A d-simplex is the convex hull of $d+1$ points in

Sub-simplex / face

* A simplex σ^{\prime} is called face of another simplex σ if it is defined by a subset of the vertices of σ
- If $\sigma \neq \sigma$, it is a proper face

Simplicial Complex

A collection of simplexes Σ is a simplicial k-complex iff:
$\forall \sigma_{1,} \sigma_{2}, \in \Sigma$
$\sigma_{1} \cap \sigma_{2} \neq \emptyset \Rightarrow \sigma_{1} \cap \sigma_{2}$ is a simplex of Σ
$\forall \sigma \in \Sigma$ all the faces of σ belong to Σ

* k is the maximum degree of simplexes in Σ

OK

Not Ok

Simplicial Complex

*A simplex σ is maximal in a simplicial complex Σ if it is not a proper face of a another simplex σ, of di Σ
*A simplicial k-complex Σ is maximal if all its maximal simplex are of order k
*No dangling lower dimensional pieces

Non maximal 2-simplicial complex

Meshes, at last

* When talking of triangle mesh the intended meaning is a maximal 2simplicial complex

Topology vs Geometry

It is quite useful to discriminate between:
*Geometric realization
Where the vertices are actually placed in space
*Topological Characterization
How the elements are combinatorially connected

Topology vs geometry 2

Given a certain shape we can represent it in many different ways; topologically different but quite similar from a geometric point of view (demo klein bottle)

Note that we can say many things on a given shape just by looking at its topology:
*Manifoldness
*Borders
Connected components
*Orientability

Manifoldness

a surface S is 2-manifold iff:

the neighborhood of each point is homeomorphic to Euclidean space in two dimension
or ... in other words..
*the neighborhood of each point is homeomorphic to a disk (or a semidisk if the surface has boundary)

Orientability

A surface is orientable if it is possible to make a consistent choice for the normal vector
:...it has two sides

* Moebius strips, klein bottles, and non manifold surfaces are not orientable

Adjacency/Incidency

*Two simplexes σ e σ^{\prime} are incident if σ is a proper face of σ^{\prime} (or viceversa)
Two k-simplexes σ e σ ' s are \mathbf{m}-adjacent ($k>m$) if there exists a m -simplex that is a proper face of σ e σ^{\prime}
*Two triangles sharing an edge are 1-adjacent
*Two triangles sharing a vertex are 0 -adjacent

Adjacency Relations

* An intuitive convention to name practically useful topological relations is to use an ordered pair of letters denoting the involved entities:

FF edge adjacency between triangular Faces
$\%$ FV from Faces to Vertices (e.g. the vertices composing a face)
*VF from a vertex to a triangle (e.g. the triangles incident on a vertex)

Adjacency Relationship

* Usually we only keep a small subset of all the possible adjacenc! relationships
* The other ones are procedurally generated

Adjacency Relation

* FF ~ 1-adjacency
- EE ~ 0 adjacency
* FE ~ proper subface of F with dim 1
* FV ~ proper subface of F con dim 0
* EV ~ proper subface of E con dim 0
* VF $\sim F$ in Σ : V proper subface of F
* VE $\sim E$ in Σ : V proper subface of E
* EF $\sim F$ in Σ : E proper subface of F
* $V V \sim V^{\prime}$ in Σ : it exists an edge $E:\left(V, V^{\prime}\right)$

Partial adiacency

* For sake of conciseness it can be useful to keep only a partial information
VF memorize only a reference from a vertex to a face and then surf over the surface using FF to find the other faces incident on V

Adjacency Relation

For a two manifoldsimplicial 2-complex in R3
*FV FE FF EF EV have bounded degree (are constant if there are no borders)
$\cdot|\mathrm{FV}|=3|\mathrm{EV}|=2|\mathrm{FE}|=3$
棌 $\mid<=2$

* $\mathrm{EF} \mid<=2$

VV VE VF EE have variable degree but we have some avg. estimations:
*|VV|~|VE|~|VF|~6
*|EE|~10
$\%$ ~ 2 V

Euler characteristic

$$
\chi=\mathrm{V}-\mathrm{E}+\mathrm{F}
$$

V : number of vertices
E : number of edges
F : number of faces

Euler characteristics

* $\chi=2$ for any simply connected polyhedron
proof by construction...
play with examples:

$$
\begin{aligned}
& \chi=V-E+F \\
& \chi=4-6+4=2
\end{aligned}
$$

$$
\begin{aligned}
& \chi=(V+2)-(E+3)+(F+1)= \\
& \chi=(4+2)-(6+3)+(4+1)=2
\end{aligned}
$$

Euler characteristics

. let's try a more complex figure...

Genus

* The Genus of a closed surface, orientable and 2-manifold is the maximum number of cuts we can make along non intersecting closed curves without splitting the surface in two.

0

...also known as the number of handles

Genus

To a topologist, a coffee cup and a donut are the same thing

Euler characteristics

$$
\chi=2-2 g
$$

where g is the genus of the surface

$$
\begin{aligned}
& \chi=V-E+F \\
& \chi=16-32+16=0=2-2 g
\end{aligned}
$$

Euler characteristics

- let's try a more complex figure...remove a face. The surface is not closed anymore

$$
\begin{aligned}
& \chi=V-E+F \\
& \chi=16-32+15=-\mathbf{1}
\end{aligned}
$$

why $=-1 ?$

Euler characteristics

$$
\chi=2-2 g-b
$$

where b is the number of borders of the surface

$$
\begin{aligned}
& \chi=V-E+F \\
& \chi=16-32+15=-1=2-2 g-b
\end{aligned}
$$

Euler characteristics

Remove the border by adding a new vertex and connecting all the \boldsymbol{k} vertices on the border to it.

$$
\begin{gathered}
\mathrm{A} \\
X^{\prime}=X+V^{\prime}-E^{\prime}+F^{\prime}=X+1-k+k=X+1
\end{gathered}
$$

Converting Representations

Parametric Surface to Mesh
*Easy. Just Sample the function on a regular domain and build a grid

- Issues
*Regular sampling does not imply regular meshing

Converting Representations

Implicit Representation to Mesh

$$
S=\left\{p \in \mathbb{R}^{3}: f(p)=0\right\} S=\left\{p \in \mathbb{R}^{3}: f(p)=0\right\}
$$

Isosurface on a regular grid Sample the function on a regular grid and apply marching cube algorithm

Converting Representations

Implicit Representation to Mesh Marching Cube

Converting Representations

Implicit Representation to Mesh Marching Cube

case 0

case 5

case 10

case 1

case 6

case 11

case 2

case 7

case 12

case 3

case 8

case 13

case 4

case 9

case 14

Converting Representations

Mesh to Implicit Representation Regularly Sampled Distance Field

For each point on a grid store the signed distance from the surface

Converting Representations

Implicit Representation <-> Mesh Issues:

-Sampling Artifacts

Mesh Data structures

How to store geometry \& connectivity?
*compact storage
file formats
*efficient algorithms on meshes
*identify time-critical operations
*all vertices/edges of a face
all incident vertices/edges/faces of a vertex

Face Set (STL)

- face:
- 3 positions

Triangles			
$\mathrm{X}_{11} \mathrm{Y}_{11} \mathrm{Z}_{11}$	$\mathrm{X}_{12} \mathrm{Y}_{12} \mathrm{Z}_{12}$	$\mathrm{X}_{13} \mathrm{Y}_{13} \mathrm{Z}_{13}$	
$\mathrm{x}_{21} \mathrm{Y}_{21} \mathrm{Z}_{21}$	$\mathrm{X}_{22} \mathrm{Y}_{22} \mathrm{Z}_{22}$	$\mathrm{x}_{23} \mathrm{Y}_{23} \mathrm{Z}_{23}$	
\ldots	\ldots	\ldots	
$\mathrm{X}_{\mathrm{F} 1} \mathrm{Y}_{\mathrm{F} 1} \mathrm{Z}_{\mathrm{F} 1}$	$\mathrm{X}_{\mathrm{F} 2} \mathrm{Y}_{\mathrm{F} 2} \mathrm{Z}_{\mathrm{F} 2}$	$\mathrm{X}_{\mathrm{F} 3} \mathrm{Y}_{\mathrm{F} 3} \mathrm{Z}_{\mathrm{F} 3}$	

$36 \mathrm{~B} / \mathrm{f}=72 \mathrm{~B} / \mathrm{v}$ no connectivity!

Typical Mesh Operation

- Access to individual vertices, edges, and faces. (enumeration of all elements in unspecified order)
- Oriented traversal of the edges of a face, which refers to finding the next edge (or previous edge) in a face.
- Access to the incident faces of an edge. Depending on the orientation, this is either the left or right face in the manifold case.
- Given an edge, access to its two endpoint vertices.
- Given a vertex, at least one incident face or edge must be accessible. Then for manifold meshes all other elements in the socalled one-ring neighborhood of a vertex can be enumerated (i.e., all incident faces or edges and neighboring vertices).

Shared Vertex (OBJ, OFF)

- vertex:
- position
- face:
- vertex indices

Triangles
$\mathrm{V}_{11} \mathrm{~V}_{12} \mathrm{~V}_{13}$
\ldots
\ldots
\ldots
$\mathrm{~V}_{\mathrm{F} 1} \mathrm{~V}_{\mathrm{F} 2} \mathrm{~V}_{\mathrm{F} 3}$

$12 \mathrm{~B} / \mathrm{v}+12 \mathrm{~B} / \mathrm{f}=36 \mathrm{~B} / \mathrm{v}$ no neighborhood info

Face-Based Connectivity

- vertex:
- position
- 1 face
- face:
- 3 vertices
- 3 face neighbors

64 B/v
no edges!

Edge-Based Connectivity

- vertex
- position
- 1 edge
- edge
- 2 vertices
- 2 faces
- 4 edges
- face

120 B/v edge orientation?

- 1 edge

Halfedge-Based Connectivity

- vertex
- position
- 1 halfedge
- halfedge
- 1 vertex
- 1 face
$-1,2$, or 3 halfedges
- face
- 1 halfedge

96 to 144 B/v
no case distinctions during traversal

