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Surfaces

<A 2-dimensional region of 3D space

“*A portion of space having length and
breadth but no thickness




Defining Surfaces

< Analytic definitions
(aka exact)

<+ Parametric surfaces

A function that maps points on a 2D domain over
a 3D surface

S:R% - R3

< Implicit surfaces

A surface defined where the points of the 3D
space satisfy a certain property
(usually a given function = 0)

S={peR®: f(p) =0}




Analytic Surfaces

<+ Parametric surfaces

A function that maps points on a 2D domain
over a 3D surface:

S:R? - R3

$(y) = (xysin (VG2 + 7)) VG2 +y7)

x=(R+r-sint)-coss

y = (R+rsint)-sins

|

z2=17-c08t



Analytic Surfaces

< Implicit surfaces

A surface defined where the points of the 3D space satisfy a
certain property (usually a given function = 0)

S={peR’: f(p) =0}

S ={(x,y,2):x? + y? + z2 —r% = 0}

S ={(x,y,2): (x* + y> + R = %) = 4R?*(x* + y?) = 0}




Representing Real World Surfaces

< Analytic definition falls short of
representing real world surfaces in a
tractable way |

S(x,y) =....7

... surfaces can be represented by cell
complexes



Cell complexes (meshes)

“Intuitive description: a continuous
surface divided in polygons

= ARRERRREEES
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triangles Generic polygons
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Cell Complexes (meshes)

“In nature, meshes arise in a varlety of
contexts: Py &
% Cells in organic tissues
% Crystals BT
“*Molecules

N/
“‘III

“*Mostly convex but /rregu/ar cells

<»Common concept: complex shapes can be

described as collections of simple building
blocks



Cell Complexes (meshes)

< Slightly more formal definition
% a cell is a convex polytope in

< a proper face of a cell is a lower dimension
convex polytope subset of a cell

coface of

proper
face of



Cell Complexes (meshes)

<+ a collection of cells is a complex iff
< every face of a cell belongs to the complex

% For every cells C and C’, their intersection
either is empty or is a common face of both
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Maximal Cell Complex

\/

** the order of a cell is the number of its sides (or
vertices)

% a complex is a k-=complex if the maximum of the
order of its cells is k

a cell is maximal if it is not a face of another cell

a k-complex is maximal /ff all maximal cells have
order k

short form : no dangling edges!
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Simplicial Complex

< A cell complex is a simplicial complex
when the cells are simplexes

< A d-simplex is the convex hull of d+1
points in

N =

0-simplex 1-simplex 2-simplex 3-simplex
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Sub-simplex / face

<A simplex ¢' is called face of another
simplex o if it is defined by a subset of
the vertices of &

N/
0‘0

“If o#c’ itis a proper face



Simplicial Complex

< A collection of simplexes ¥ is a
simplicial k-complex iff:

’:’V Gl, 02, E X
ocNc,#® = o,;No,Isasimplex of X

“V o € X all the faces of c belong to X
“* K is the maximum degree of simplexes in X

A KA

Not Ok



Simplicial Complex

<A simplex o is maximal in a simplicial
complex X if it is not a proper face of a
another simplex o’ of di X

<A simplicial k-complex X is maximal if all
its maximal simplex are of order k
“*No dangling lower dimensional pieces

Non maximal 2-simplicial complex



Meshes, at last

<+ When talking of triangle mesh the
intended meaning is a maximal 2-
simplicial complex
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Topology vs Geometry

< It is quite useful to discriminate
between:
“»Geometric realization
“*Where the vertices are actually placed in space

“*Topological Characterization
“How the elements are combinatorially connected



Topology vs geometry 2

Given a certain shape we can represent it in
many different ways; topologically different
but quite similar from a geometric point of
view (demo klein bottle)

“*Note that we can say many things on a given
shape just by looking at its topology:
“*Manifoldness
“Borders
“*Connected components

“Orientability



Manifoldness

‘+ a surface S is 2-manifold /ff:

“the neighborhood of each point is
homeomorphic to Euclidean space in two
dimension
or ... in other words..

“the neighborhood of each point is
homeomorphic to a disk (or a semidisk if the
surface has boundary)

19




Orientability

% A surface is orientable if it is possible to
make a consistent choice for the normal
vector
*» ...it has two sides

< Moebius strips, klein bottles, and non manifold
surfaces are not orientable

7 R
x{;}f b B
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Adjacency/Incidency

< Two simplexes o e ¢' are incident if g is
a proper face of o' (or viceversa)

“Two k-simplexes o e ¢' s are
m-adjacent (k>m) if there exists a
m-simplex that is a proper face of o e ¢’
“Two triangles sharing an edge are 1-adjacent
< Two triangles sharing a vertex are 0-adjacent



Adjacency Relations

“*An intuitive convention to name
practically useful topological relations is
to use an ordered pair of letters denoting
the involved entities:

“FF edge adjacency between triangular Faces

“FV from Faces to Vertices (e.g. the vertices
composing a face)

“VF from a vertex to a triangle (e.g. the
triangles incident on a vertex)




Adjacency Relationship

< Usually we only keep

e adjacenc O
—

a small su
the possib
relationshi

hset of all

DS

+*The other ones are
procedurally

generated

C.F/\»VQ



Adjacency Relation

FF ~ 1-adjacency

EE ~ 0 adjacency

FE ~ proper subface of F with dim 1

FV ~ proper subface of F con dim O

EV ~ proper subface of E con dim 0

VF ~ Fin Z : V proper subface of F

VE ~ Ein 2 : V proper subface of E

EF ~ Fin X : E proper subface of F

VV ~ V'in Z : it exists an edge E:(V,V')

VA




Partial adiacency

For sake of conciseness it can be useful
to keep only a partial information

“VF* memorize only a reference from a
vertex to a face and then surf over the
surface using FF to find the other faces
incident on V



Adjacency Relation

< For a two manifoldsimplicial 2-complex in
R3

“FV FE FF EF EV have bounded degree (are
constant if there are no borders)
<«|FV|= 3 |EV| = 2 |FE| = 3
“|FF|] <= 2
“|EF| <=2
“VV VE VF EE have variable degree
but we have some avg. estimations:
< |VV|~|VE|~|VF|~6
<|EE|~10
“F ~ 2V
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0

*

V :
E :
F :

Euler characteristic
x=V-E+F

number of vertices
number of edges
number of faces
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The Five Platonic Solids

QeI 4

Tetrahedron

Hexahedron or cube

Octahedron

Dodecahedron

Icosahedron
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The Five Platonic Solids

Tetrahedron ' 6 4
Hexahedron or cube . 8 12 6
Octahedron ‘ 6 12 8
Dodecahedron . 20 30 12
Icosahedron . 30 20
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Euler characteristics

% v = 2 for any simply connected polyhedron
< proof by construction...
< play with examples:

E+F x=WV+2)—(E+3)+(F+1) =
6 +4=2 x=@A+2)—(6+3)+@+1)=2
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Euler characteristics

< let’s try a more complex figure...

x=V —E+F
x=16 —32 +16=0

% why =07




Genus

< The Genus of a closed surface, orientable and 2-manifold
is the maximum number of cuts we can make along non
intersecting closed curves without splitting the surface in
two.

2 ...also known as the number of handles
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Genus

To a topologist, a coffee cup and a donut are the same thing
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N/
0‘0

Euler characteristics

X=2-2g

where g is the genus of the surface

x=V —E+F
x=16 —32 +16=0=2-2g
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Euler characteristics

% let’s try a more complex figure...remove a
face. The surface is not closed anymore

x=V —E+F
x=16 —32 +15= -1

4

“ why =-17

*
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Euler characteristics

X=2—-2g9g—0b

+ where b is the number of borders of the
surface

x=V —E+F
x=16 —32 +15=—-1=2-2g- b
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Euler characteristics

“*Remove the border by adding a new
vertex and connecting all the k vertices
on the border to it.

<

A N
X=X+V'-E'+F=X+1-k+k=X+1
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Converting Representations

Parametric Surface to Mesh

< Easy. Just Sample the function on a
regular domain and build a grid

e Issues

“*Regular sampling does not imply regular
meshing
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Converting Representations

Implicit Representation to Mesh
S={peR:f(p)=0}S={peR3:f(p) =0}

Isosurface on a regular grid

< Sample the function on a regular grid and
apply marching cube algorithm
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Converting Representations

Implicit Representation to Mesh
Marching Cube

L)
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0(-) 165 1(-) 3(-) 2(-)
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L
A 0(+) 7(4) 31
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1(-)
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Look-up table contour lines

[ 18] [

O
Case 0 Casel Case?2
W o

Ease 4 Caseb %_ase 6 Case?

[ ]

Case 8 Case9 Case 10 Case 1l

H LK L]

Case 12 Case 13 Case 14 Case 15

Case 3
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Converting Representations

Implicit Representation to Mesh

Marching Cube
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Converting Representations

Mesh to Implicit Representation
Regularly Sampled Distance Field

For each point on a grid
store the signed distance
from the surface



Converting Representations
Implicit Representation <-> Mesh

Issues
“*Sampling Artifacts

NNWHZEZ

S /
SSEiiny
NogEs="

v




Mesh Data structures

“*How to store geometry & connectivity?

“*compact storage
+file formats

< efficient algorithms on meshes
“identify time-critical operations
“all vertices/edges of a face
“all incident vertices/edges/faces of a vertex



Face Set (STL)

- face:
— 3 positions

Triangles

X11 Y11 211

X12 Y12 212

X13 Y13 213

X21 Y21 221

X22 Y22 222

X23 Y23 223

Xr1 YF1 Z2F1

Xr2 YF2 2F2

XrF3 YF3 ZF3

36 B/f =72 B/lv
no connectivity!

Y



Typical Mesh Operation

» Access to individual vertices, edges, and faces. (enumeration of all
elements in unspecified order)

» Oriented traversal of the edges of a face, which refers to finding the
next edge (or previous edge) in a face.

» Access to the incident faces of an edge. Depending on the
orientation, this is either the left or right face in the manifold case.

» Given an edge, access to its two endpoint vertices.

» Given a vertex, at least one incident face or edge must be
accessible. Then for manifold meshes all other elements in the so-
called one-ring neighborhood of a vertex can be enumerated (i.e., all
incident faces or edges and neighboring vertices).



Shared Vertex (OBJ, OFF)

e vertex: Vertices Triangles
— position X1 y1 21 V11 V12 V13
- face: —

— vertex indices

Vrl1 VF2 VF3

12 B/v + 12 B/f =36 B/v
no neighborhood info

0oo)
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Face-Based Connectivity

e vertex:

-------------- £
— position Q- /\ R4
\ /

— 1 face \ >} /)
\\ /I
- face: \céii:///’
\ /
— 3 vertices < /

— 3 face neighbors ~oL S

\«‘
~

64 B/v
no edges!
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Edge-Based Connectivity

* vertex
— position
— 1 edge

» edge
— 2 vertices
— 2 faces

— 4 edges 120 B/v

- face edge orientation?
— 1 edge
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Halfedge-Based Connectivity

* vertex o
— position / \
— 1 halfedge
QO (@)
- halfedge \ /
— 1 vertex S
— 1 face
— 1, 2, or 3 halfedges 06 to 144 B/v
. face no case distinctions

_ 1 halfedge during traversal

AR N
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