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Surfaces

vA 2-dimensional region of 3D space
vA portion of space having length and 

breadth but no thickness
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v Analytic definitions
(aka exact)

v Parametric surfaces
A function that maps points on a 2D domain over 
a 3D surface 

𝑆:ℝ! → ℝ"

v Implicit surfaces
A surface defined where the points of the 3D 
space satisfy a certain property 
(usually a given function = 0)

𝑆 = 𝑝 ∈ ℝ" ∶ 𝑓 𝑝 = 0

Defining Surfaces
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v Parametric surfaces
A function that maps points on a 2D domain 
over a 3D surface:

𝑆:ℝ! → ℝ"

Analytic Surfaces
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vImplicit surfaces
A surface defined where the points of the 3D space satisfy a 
certain property (usually a given function = 0)

𝑆 = 𝑝 ∈ ℝ" ∶ 𝑓 𝑝 = 0

Analytic Surfaces
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Representing Real World Surfaces

vAnalytic definition falls short of 
representing real world surfaces in a 
tractable way

... surfaces can be represented by cell 
complexes
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Cell complexes (meshes)

vIntuitive description: a continuous 
surface divided in polygons

quadrilaterals (quads)

triangles Generic polygons
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Cell Complexes (meshes)

vIn nature, meshes arise in a variety of 
contexts:
vCells in organic tissues
vCrystals
vMolecules
v…
vMostly convex but irregular cells
vCommon concept: complex shapes can be 

described as collections of simple building 
blocks 

8
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Cell Complexes (meshes)

v Slightly more formal definition
v a cell is a convex polytope in  
v a proper face of a cell is a lower dimension 

convex polytope subset of a cell
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Cell Complexes (meshes)

v a collection of cells is a complex iff
v every face of a cell belongs to the complex
v For every cells C and C’, their intersection 

either is empty or is a common face of both
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Maximal Cell Complex

v the order of a cell is the number of its sides (or 
vertices)

v a complex is a k-complex if the maximum of the 
order of its cells is k

v a cell is maximal if it is not a face of another cell
v a k-complex is maximal iff all maximal cells have 

order k  
v short form : no dangling edges!
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Simplicial Complex

v A cell complex is a simplicial complex 
when the cells are simplexes

v A d-simplex is the convex hull of d+1 
points in 

0-simplex 1-simplex 2-simplex 3-simplex



Sub-simplex / face

vA simplex s' is called face of another 
simplex s if it is defined by a subset of 
the vertices of s

v

vIf  s≠s’ it is a proper face



vA collection of simplexes S is a 
simplicial k-complex iff:
v∀ s1, s2, ∈ S    
s1∩s2 ≠ ∅ ⇒ s1∩s2 is a simplex of S

v∀ s ∈ S all the faces of s belong to S
vk is the maximum degree of simplexes in S

Simplicial Complex

OK Not Ok



vA simplex s is maximal in a simplicial 
complex S if it is not a proper face of a 
another simplex s’ of  di S

vA simplicial k-complex S is maximal if all 
its maximal simplex are of order k
vNo dangling lower dimensional pieces

Simplicial Complex

Non maximal 2-simplicial complex
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Meshes, at last

v When talking of triangle mesh the 
intended meaning is a maximal 2-
simplicial complex



Topology vs Geometry

vIt is quite useful to discriminate 
between:
vGeometric realization

vWhere the vertices are actually placed in space

vTopological Characterization
vHow the elements are combinatorially connected



Topology vs geometry 2

Given a certain shape we can represent it in 
many different ways; topologically different 
but quite similar from a geometric point of 
view (demo klein bottle) 

vNote that we can say many things on a given 
shape just by looking at its topology:
vManifoldness
vBorders 
vConnected components
vOrientability
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Manifoldness

v a surface S is 2-manifold iff:
vthe neighborhood of each point is 

homeomorphic to Euclidean space in two 
dimension
or … in other words..

vthe neighborhood of each point is 
homeomorphic to a disk (or a semidisk if the 
surface has boundary) 
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Orientability
v A surface is orientable if it is possible to 

make a consistent choice for the normal 
vector 
v …it has two sides

v Moebius strips, klein bottles, and non manifold 
surfaces are not orientable



Adjacency/Incidency

vTwo simplexes σ e σ' are incident if σ is 
a proper face of σ' (or viceversa)

vTwo k-simplexes σ e σ' s are 
m-adjacent (k>m) if there exists a 
m-simplex that is a proper face of σ e σ'
vTwo triangles sharing an edge are 1-adjacent
vTwo triangles sharing a vertex are 0-adjacent



Adjacency Relations

vAn intuitive convention to name 
practically useful topological relations is 
to use an ordered pair of letters denoting 
the involved entities:
vFF edge adjacency between triangular Faces 
vFV from Faces to Vertices (e.g. the vertices 

composing a face)
vVF from a vertex to a triangle (e.g. the 

triangles incident on a vertex) 



Adjacency Relationship

vUsually we only keep 
a small subset of all 
the possible adjacency 
relationships

vThe other ones are 
procedurally 
generated



Adjacency Relation
v FF ~ 1-adjacency
v EE ~ 0 adjacency
v FE ~ proper subface of F with dim 1
v FV ~ proper subface of F con dim 0
v EV ~ proper subface of E con dim 0
v VF ~ F in Σ : V proper subface of F
v VE ~ E in Σ : V proper subface of E
v EF ~ F in Σ : E proper subface of F
v VV ~ V' in Σ : it exists an edge E:(V,V')



Partial adiacency

vFor sake of conciseness it can be useful 
to keep only a partial information 
vVF*  memorize only a reference from a 

vertex to a face and then surf over the 
surface using FF to find the other faces 
incident on V 



Adjacency Relation

vFor a two manifoldsimplicial 2-complex in 
R3
vFV FE FF EF EV have bounded degree (are 

constant if there are no borders)
v|FV|= 3 |EV| = 2 |FE| = 3 
v|FF| <= 2 
v|EF| <= 2 

vVV VE VF EE have variable degree 
but we have some avg. estimations:
v|VV|~|VE|~|VF|~6
v|EE|~10
vF ~ 2V
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Euler characteristic

v
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Euler characteristics
v c = 2 for any simply connected polyhedron
v proof by construction…
v play with examples:
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Euler characteristics

v let’s try a more complex figure…

v

v why =0 ?
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Genus

v The Genus of a closed surface, orientable and 2-manifold 
is the maximum number of cuts we can make along non 
intersecting closed curves  without splitting the surface in 
two.

v …also known as the number of handles

0 1 2  
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To a topologist, a coffee cup and a donut are the same thing

Genus
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Euler characteristics

v where g is the genus of the surface

𝜒 = 2 − 2𝑔
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Euler characteristics

v let’s try a more complex figure…remove a 
face. The surface is not closed anymore

v

v why =-1 ?
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Euler characteristics

v where b is the number of borders of the 
surface

𝜒 = 2 − 2𝑔 − 𝑏
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Euler characteristics

vRemove the border by adding a new 
vertex and connecting all the k vertices 
on the border to it.

A A’

X' = X + V' -E' + F' = X + 1 – k + k = X +1  
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Converting Representations

Parametric Surface to Mesh
vEasy. Just Sample the function on a 

regular domain and build a grid 

vIssues
vRegular sampling does not imply regular 

meshing
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Converting Representations

Implicit Representation to Mesh

𝑆 = 𝑝 ∈ ℝ" ∶ 𝑓 𝑝 = 0 𝑆 = 𝑝 ∈ ℝ" ∶ 𝑓 𝑝 = 0

Isosurface on a regular grid
vSample the function on a regular grid and 

apply marching cube algorithm
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Converting Representations

Implicit Representation to Mesh
Marching Cube 
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Converting Representations

Implicit Representation to Mesh
Marching Cube 
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Converting Representations

Mesh to Implicit Representation
Regularly Sampled Distance Field

For each point on a grid
store the signed distance
from the surface
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Converting Representations

Implicit Representation <-> Mesh
Issues:
vSampling Artifacts



Mesh Data structures

vHow to store geometry & connectivity?
vcompact storage

vfile formats

vefficient algorithms on meshes
videntify time-critical operations
vall vertices/edges of a face
vall incident vertices/edges/faces of a vertex



Face Set (STL)

• face:
– 3 positions

Triangles

x11 y11 z11 x12 y12 z12 x13 y13 z13

x21 y21 z21 x22 y22 z22 x23 y23 z23

... ... ...

xF1 yF1 zF1 xF2 yF2 zF2 xF3 yF3 zF3

36 B/f = 72 B/v  
no connectivity!

6
7
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Typical Mesh Operation

• Access to individual vertices, edges, and faces. (enumeration of all 
elements in unspecified order)

• Oriented traversal of the edges of a face, which refers to finding the 
next edge (or previous edge) in a face.

• Access to the incident faces of an edge. Depending on the 
orientation, this is either the left or right face in the manifold case. 

• Given an edge, access to its two endpoint vertices.
• Given a vertex, at least one incident face or edge must be 

accessible. Then for manifold meshes all other elements in the so-
called one-ring neighborhood of a vertex can be enumerated (i.e., all 
incident faces or edges and neighboring vertices).



Shared Vertex (OBJ, OFF)

• vertex:
– position

• face:
– vertex indices

Vertices
x1 y1 z1

...

xV yV zV

Triangles

v11 v12 v13

...

...

...

...

vF1 vF2 vF3

12 B/v + 12 B/f = 36 B/v  
no neighborhood info

6
8
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Face-Based Connectivity

• vertex:
– position
– 1 face

• face:
– 3 vertices
– 3 face neighbors

64 B/v  
no edges!

69
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Edge-Based Connectivity

• vertex
– position
– 1 edge

• edge
– 2 vertices
– 2 faces
– 4 edges

• face
– 1 edge

120 B/v  
edge orientation?

70
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Halfedge-Based Connectivity

• vertex
– position
– 1 halfedge

• halfedge
– 1 vertex
– 1 face
– 1, 2, or 3 halfedges

• face
– 1 halfedge

96 to 144 B/v
no case distinctions 

during traversal

7
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